Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cells ; 11(21)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359899

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which the ß-cells of the pancreas are attacked by the host's immune system, ultimately resulting in hyperglycemia. It is a complex multifactorial disease postulated to result from a combination of genetic and environmental factors. In parallel with increasing prevalence of T1D in genetically stable populations, highlighting an environmental component, consumption of advanced glycation end products (AGEs) commonly found in in Western diets has increased significantly over the past decades. AGEs can bind to cell surface receptors including the receptor for advanced glycation end products (RAGE). RAGE has proinflammatory roles including in host-pathogen defense, thereby influencing immune cell behavior and can activate and cause proliferation of immune cells such as islet infiltrating CD8+ and CD4+ T cells and suppress the activity of T regulatory cells, contributing to ß-cell injury and hyperglycemia. Insights from studies of individuals at risk of T1D have demonstrated that progression to symptomatic onset and diagnosis can vary, ranging from months to years, providing a window of opportunity for prevention strategies. Interaction between AGEs and RAGE is believed to be a major environmental risk factor for T1D and targeting the AGE-RAGE axis may act as a potential therapeutic strategy for T1D prevention.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Inflamação/complicações , Hiperglicemia/complicações
2.
Nutrients ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807857

RESUMO

Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a "western" diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.


Assuntos
Insuficiência Renal Crônica , Uremia , Animais , Dieta , Dieta Ocidental , Produtos Finais de Glicação Avançada/metabolismo , Rim/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Insuficiência Renal Crônica/metabolismo , Uremia/complicações
3.
Diabetes ; 71(9): 1994-2008, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35713929

RESUMO

Type 1 diabetes is an autoimmune disease with no cure, where clinical translation of promising therapeutics has been hampered by the reproducibility crisis. Here, short-term administration of an antagonist to the receptor for advanced glycation end products (sRAGE) protected against murine diabetes at two independent research centers. Treatment with sRAGE increased regulatory T cells (Tregs) within the islets, pancreatic lymph nodes, and spleen, increasing islet insulin expression and function. Diabetes protection was abrogated by Treg depletion and shown to be dependent on antagonizing RAGE with use of knockout mice. Human Tregs treated with a RAGE ligand downregulated genes for suppression, migration, and Treg homeostasis (FOXP3, IL7R, TIGIT, JAK1, STAT3, STAT5b, CCR4). Loss of suppressive function was reversed by sRAGE, where Tregs increased proliferation and suppressed conventional T-cell division, confirming that sRAGE expands functional human Tregs. These results highlight sRAGE as an attractive treatment to prevent diabetes, showing efficacy and reproducibility at multiple research centers and in human T cells.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Animais , Humanos , Insulina/uso terapêutico , Camundongos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Reprodutibilidade dos Testes , Linfócitos T Reguladores
4.
iScience ; 24(11): 103308, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34820603

RESUMO

The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%-60%], carbohydrate [20%-75%], and fat [20%-75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes.

5.
Nutrients ; 13(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684500

RESUMO

There is a paucity of data on whether Australian university students are meeting specific nutrient guidelines, and the relationship between diet and physical activity patterns with body composition and metabolic health. In this study, biomedical students from The University of Queensland were recruited (150 males and 211 females, 19-25 years), and nutritional intake (ASA24-Australia) and physical activity levels (Active Australia Survey) quantified. Body composition (height, waist circumference, body mass, BMI, and percentage body fat; BOD POD) and metabolic health (oral glucose tolerance test) were also measured. Median daily energy intake was 6760 kJ in females and 10,338 kJ in males, with more than 30% of total energy coming from energy-dense, nutrient-poor foods. Only 1 in 10 students met fruit or vegetable recommendations, with less than one third meeting recommendations for fibre, calcium, and potassium. Intakes of calcium and iron were particularly low among female students, with only 16% and 6% of students meeting the recommended dietary intake (RDI), respectively. The majority of males and almost half of all females exceeded the suggested dietary target (SDT) for sodium. Sufficient physical activity (≥150 min over ≥5 sessions per week) was met by more than 80% of students. Body composition and blood glucose concentrations were largely normal but an early sign of insulin resistance (HOMA-IR > 2.0), measured in a subset of students, was present in 21% of males and 17% of females. Modest reductions in blood glucose levels and percentage body fat were associated with increasing vigorous activity. Low intakes of fibre, calcium, and potassium could be corrected by increasing fruit, vegetable, and dairy intake, and, among females, health promotion messages focusing on iron-rich foods should be prioritised. While these nutrient deficiencies did not translate into immediate metabolic heath concerns, dietary behaviours can track into adulthood and have lasting effects on overall health.


Assuntos
Composição Corporal , Dieta Saudável/estatística & dados numéricos , Exercício Físico , Fidelidade a Diretrizes/estatística & dados numéricos , Estudantes de Medicina/estatística & dados numéricos , Adulto , Austrália , Glicemia/análise , Índice de Massa Corporal , Estudos Transversais , Dieta Saudável/normas , Ingestão de Alimentos , Comportamento Alimentar , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Política Nutricional , Circunferência da Cintura
6.
Diabetes ; 70(8): 1754-1766, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34285121

RESUMO

Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E -/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Nefropatias Diabéticas/sangue , Receptor Celular 1 do Vírus da Hepatite A/sangue , Rim/patologia , Adolescente , Adulto , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Testes de Função Renal , Masculino , Estudos Retrospectivos , Adulto Jovem
7.
Metabolites ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203471

RESUMO

Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic ß-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate ß-cell effects, NOD-derived MIN6N8 ß-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts ß-cell function.

8.
Endocrinol Diabetes Metab ; 4(3): e00278, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34277994

RESUMO

AIMS: The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS: To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS: Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS: These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.


Assuntos
Nefropatias Diabéticas , Podócitos , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Membrana Basal Glomerular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Podócitos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
9.
Sci Rep ; 11(1): 9422, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941808

RESUMO

To examine if skin autofluorescence (sAF) differed in early adulthood between individuals with type 1 diabetes and age-matched controls and to ascertain if sAF aligned with risk for kidney disease. Young adults with type 1 diabetes (N = 100; 20.0 ± 2.8 years; M:F 54:46; FBG-11.6 ± 4.9 mmol/mol; diabetes duration 10.7 ± 5.2 years; BMI 24.5(5.3) kg/m2) and healthy controls (N = 299; 20.3 ± 1.8 years; M:F-83:116; FBG 5.2 ± 0.8 mmol/L; BMI 22.5(3.3) kg/m2) were recruited. Skin autofluorescence (sAF) and circulating AGEs were measured. In a subset of both groups, kidney function was estimated by GFRCKD-EPI CysC and uACR, and DKD risk defined by uACR tertiles. Youth with type 1 diabetes had higher sAF and BMI, and were taller than controls. For sAF, 13.6% of variance was explained by diabetes duration, height and BMI (Pmodel = 1.5 × 10-12). In the sub-set examining kidney function, eGFR and sAF were higher in type 1 diabetes versus controls. eGFR and sAF predicted 24.5% of variance in DKD risk (Pmodel = 2.2 × 10-9), which increased with diabetes duration (51%; Pmodel < 2.2 × 10-16) and random blood glucose concentrations (56%; Pmodel < 2.2 × 10-16). HbA1C and circulating fructosamine albumin were higher in individuals with type 1 diabetes at high versus low DKD risk. eGFR was independently associated with DKD risk in all models. Higher eGFR and longer diabetes duration are associated with DKD risk in youth with type 1 diabetes. sAF, circulating AGEs, and urinary AGEs were not independent predictors of DKD risk. Changes in eGFR should be monitored early, in addition to uACR, for determining DKD risk in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Produtos Finais de Glicação Avançada/análise , Nefropatias/patologia , Pele/química , Adolescente , Adulto , Glicemia/análise , Diabetes Mellitus Tipo 1/mortalidade , Feminino , Taxa de Filtração Glomerular/fisiologia , Hemoglobinas Glicadas/análise , Humanos , Rim/patologia , Masculino , Imagem Óptica , Risco , Adulto Jovem
10.
Nutrients ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987824

RESUMO

Postprandial glucose excursions are postulated to increase the risk for diabetes complications via the production of advanced glycation end products (AGEs). The soluble receptor of AGEs (sRAGE) likely acts as a decoy receptor, mopping up AGEs, diminishing their capacity for pro-inflammatory and pro-apoptotic signaling. Recent evidence suggests that AGEs and soluble receptor for AGEs (sRAGE) may be altered under postprandial and fasting conditions. Here, we investigated the effects of increasing oral glucose loads during oral glucose tolerance tests (OGTT) and matched isoglycaemic intravenous (i.v.) glucose infusions (IIGI) on circulating concentrations of sRAGE. Samples from eight individuals with type 2 diabetes and eight age-, gender-, and body mass index (BMI)-matched controls, all of whom underwent three differently dosed OGTTs (25 g, 75 g, and 125 g), and three matched IIGIs were utilised (NCT00529048). Serum concentrations of sRAGE were measured over 240 min during each test. For individuals with diabetes, sRAGE area under the curve (AUC0-240min) declined with increasing i.v. glucose dosages (p < 0.0001 for trend) and was lower during IIGI compared to OGTT at the 125 g dosage (p = 0.004). In control subjects, sRAGE AUC0-240min was only lower during IIGI compared to OGTT at the 25 g dose (p = 0.0015). sRAGE AUC0-240min was negatively correlated to AUC0-240min for the incretin hormone glucagon-like peptide -1 (GLP-1) during the 75 g OGTT and matched IIGI, but only in individuals with type 2 diabetes. These data suggest that gastrointestinal factors may play a role in regulating sRAGE concentrations during postprandial glucose excursions, thus warranting further investigation.


Assuntos
Complicações do Diabetes/complicações , Diabetes Mellitus Tipo 2/metabolismo , Glucose/administração & dosagem , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Administração Oral , Idoso , Glicemia , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Homeostase , Humanos , Incretinas , Masculino , Pessoa de Meia-Idade
11.
Med Res Rev ; 40(4): 1200-1219, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112452

RESUMO

Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 1/prevenção & controle , Humanos , Ligantes , Prevenção Secundária , Solubilidade
12.
Islets ; 10(1): 10-24, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157116

RESUMO

The contribution of environmental factors to pancreatic islet damage in type 1 diabetes remains poorly understood. In this study, we crossed mice susceptible to type 1 diabetes, where parental male (CD8+ T cells specific for IGRP206-214; NOD8.3) and female (NOD/ShiLt) mice were randomized to a diet either low or high in AGE content and maintained on this diet throughout pregnancy and lactation. After weaning, NOD8.3+ female offspring were identified and maintained on the same parental feeding regimen for until day 28 of life. A low AGE diet, from conception to early postnatal life, decreased circulating AGE concentrations in the female offspring when compared to a high AGE diet. Insulin, proinsulin and glucagon secretion were greater in islets isolated from offspring in the low AGE diet group, which was akin to age matched non-diabetic C57BL/6 mice. Pancreatic islet expression of Ins2 gene was also higher in offspring from the low AGE diet group. Islet expression of glucagon, AGEs and the AGE receptor RAGE, were each reduced in low AGE fed offspring. Islet immune cell infiltration was also decreased in offspring exposed to a low AGE diet. Within pancreatic lymph nodes and spleen, the proportions of CD4+ and CD8+ T cells did not differ between groups. There were no significant changes in body weight, fasting glucose or glycemic hormones. This study demonstrates that reducing exposure to dietary AGEs throughout gestation, lactation and early postnatal life may benefit pancreatic islet secretion and immune infiltration in the type 1 diabetic susceptible mouse strain, NOD8.3.


Assuntos
Dieta , Produtos Finais de Glicação Avançada/efeitos adversos , Ilhotas Pancreáticas/efeitos dos fármacos , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Produtos Finais de Glicação Avançada/administração & dosagem , Ilhotas Pancreáticas/fisiopatologia , Lactação/efeitos dos fármacos , Lactação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
13.
Sci Rep ; 7(1): 15190, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123192

RESUMO

Mitochondrial dysfunction is a pathological mediator of diabetic kidney disease (DKD). Our objective was to test the mitochondrially targeted agent, MitoQ, alone and in combination with first line therapy for DKD. Intervention therapies (i) vehicle (D); (ii) MitoQ (DMitoQ;0.6 mg/kg/day); (iii) Ramipril (DRam;3 mg/kg/day) or (iv) combination (DCoAd) were administered to male diabetic db/db mice for 12 weeks (n = 11-13/group). Non-diabetic (C) db/m mice were followed concurrently. No therapy altered glycaemic control or body weight. By the study end, both monotherapies improved renal function, decreasing glomerular hyperfiltration and albuminuria. All therapies prevented tubulointerstitial collagen deposition, but glomerular mesangial expansion was unaffected. Renal cortical concentrations of ATP, ADP, AMP, cAMP, creatinine phosphate and ATP:AMP ratio were increased by diabetes and mostly decreased with therapy. A higher creatine phosphate:ATP ratio in diabetic kidney cortices, suggested a decrease in ATP consumption. Diabetes elevated glucose 6-phosphate, fructose 6-phosphate and oxidised (NAD+ and NADP+) and reduced (NADH) nicotinamide dinucleotides, which therapy decreased generally. Diabetes increased mitochondrial oxygen consumption (OCR) at complex II-IV. MitoQ further increased OCR but decreased ATP, suggesting mitochondrial uncoupling as its mechanism of action. MitoQ showed renoprotection equivalent to ramipril but no synergistic benefits of combining these agents were shown.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Nefropatias Diabéticas/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Compostos Organofosforados/administração & dosagem , Ramipril/administração & dosagem , Ubiquinona/análogos & derivados , Animais , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Camundongos , Resultado do Tratamento , Ubiquinona/administração & dosagem
14.
Diabetologia ; 60(11): 2129-2138, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28725914

RESUMO

In parallel with the growing diabetes pandemic, there is an increasing burden of micro- and macrovascular complications, occurring in the majority of patients. The identification of a number of synergistic accelerators of disease, providing therapeutic pathways, has stabilised the incidence of complications in most western nations. However, the primary instigators of diabetic complications and, thus, prevention strategies, remain elusive. This has necessitated a refocus on natural history studies, where tissue and plasma samples are sequentially taken to determine when and how disease initiates. In addition, recent Phase III trials, wherein the pleiotropic effects of compounds were arguably as beneficial as their glucose-lowering capacity in slowing the progression of complications, have identified knowledge gaps. Recently the influence of other widely recognised pathological pathways, such as mitochondrial production of reactive oxygen species, has been challenged, highlighting the need for a diverse and robust global research effort to ascertain viable therapeutic targets. Technological advances, such as -omics, high-resolution imaging and computational modelling, are providing opportunities for strengthening and re-evaluating research findings. Newer areas such as epigenetics, energetics and the increasing scrutiny of our synergistic inhabitants, the microbiota, also offer novel targets as biomarkers. Ultimately, however, this field requires concerted lobbying to support all facets of diabetes research.


Assuntos
Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Retinopatia Diabética/metabolismo , Doenças Cardiovasculares/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Humanos
16.
Sci Rep ; 6: 26428, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27226136

RESUMO

Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.


Assuntos
Albuminúria/metabolismo , Compostos Benzidrílicos/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Albuminúria/urina , Animais , Compostos Benzidrílicos/farmacologia , Biomarcadores/metabolismo , Biomarcadores/urina , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Glucosídeos/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Hipoglicemiantes/farmacologia , Lipocalina-2/urina , Masculino , Camundongos , Resultado do Tratamento
17.
Diabetologia ; 57(9): 1977-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24957662

RESUMO

AIMS/HYPOTHESIS: The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. METHODS: Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. RESULTS: Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-ß were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. CONCLUSIONS/INTERPRETATION: These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Rim/metabolismo , Receptores Imunológicos/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Macrófagos/metabolismo , Masculino , Camundongos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética
18.
BMC Genomics ; 14: 650, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24059691

RESUMO

BACKGROUND: Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the 'signal' of variations of interest and the 'noise' of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. RESULTS: Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. CONCLUSION: We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.


Assuntos
Mapeamento Cromossômico/métodos , Loci Gênicos/genética , Genoma de Inseto/genética , Resistência a Inseticidas/genética , Fosfinas/toxicidade , Tribolium/genética , Animais , Cromossomos de Insetos/genética , Cruzamentos Genéticos , Epistasia Genética , Feminino , Estudos de Associação Genética , Aptidão Genética , Masculino , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Tribolium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...